

Mr. Wright's Math Extravaganza

Precalculus Matrices

Level 2.0: 70% on test, Level 3.0: 80% on test, Level 4.0: level 3.0 and success on applications Score I Can Statements

4.0	□ I can demonstrate in-depth inferences and applications that go beyond what was taught.							
3.5	In addition to score 3.0 performance, partial success at score 4.0 content							
3.0	I can solve a system of linear equations using Gauss-Jordan elimination.							
5.0	I can solve a system of linear equations using an inverse matrix.							
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content							
	□ I can put a matrix in row-echelon form and reduced-row-echelon form.							
2.0	\Box I can perform matrix operations (+, -, ×).							
	I can find the inverse of a square matrix.							
	I can find the determinant of a matrix.							
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content.							
1.0	With help, partial success at score 2.0 content and score 3.0 content.							
0.5	With help, partial success at score 2.0 content but not at score 3.0 content.							
0.0	Even with help, no success.							

9-01 Matrices and Systems of Equations

Matrix
• Rectangular of numbers $\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$
 <i>a_{rowicolumn}</i> Each entry is an Augmented Matrix Two matricestogether Order of matrix
What is the order of $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$?
Elementary Row Operations 2 rows a row by a nonzero constant a multiple of a row to another row Add 2 times 1st row to the 2nd row: $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$
Row-Echelon Form
 All rows consisting entirely of are at For other rows, the first entry is For successive rows, the leading 1 in the row is farther to the $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Reduced Row-Echelon Form
• Columns with leading 1 have as other entries $\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Precalculus 9-01

	(x+3y+4z=7)
Solve	2x + 7y + 5z = 103x + 10y + 4z = 27
	3x + 10y + 4z = 27

Name: _

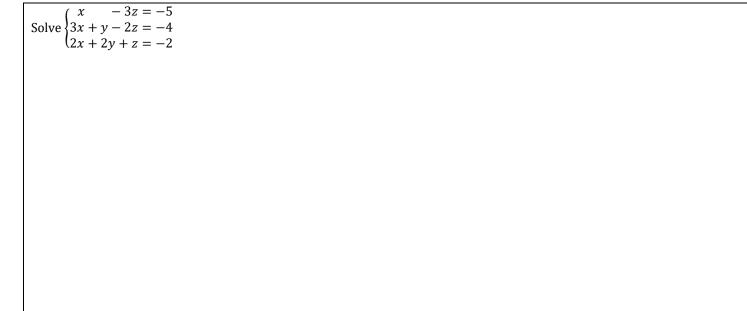
9-02 Gaussian Elimination

Gaussian Elimination

• Solving a system of linear equations by putting it into ______form with elementary row operations

Gauss-Jordan Elimination

- Solve by putting the system into _____row-echelon form
- If a row becomes all zeros with final entry not zero = ______solution
- If a row becomes all zeros = ______solutions

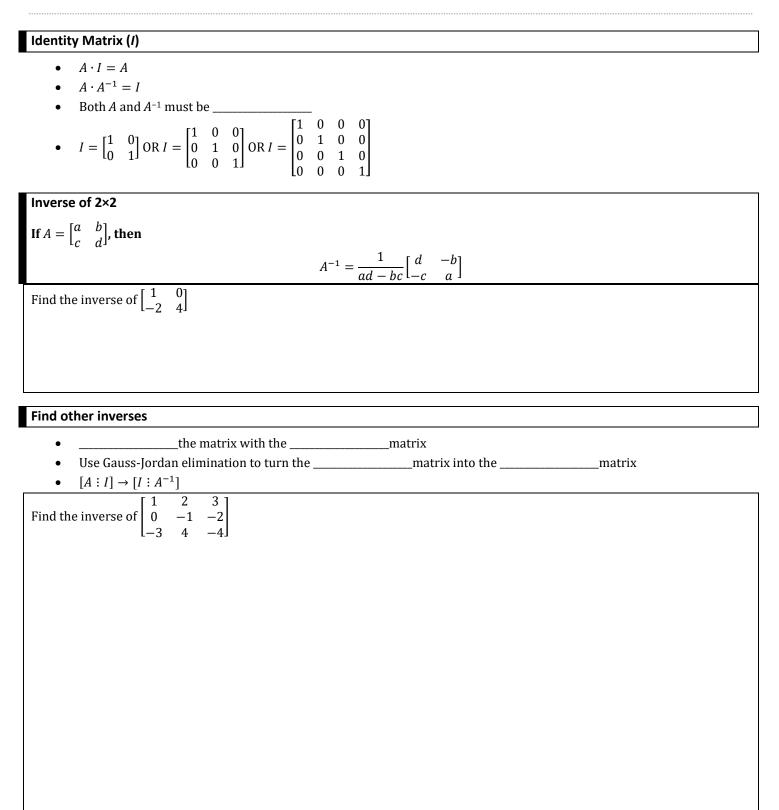


	x + y + 5z = -3
Solve	-x - 2y - 8z = 5
	-x - 2z = 1

9-03 Matrix Operations

Matrix addition and subtraction
Both matrices must have same
Add or subtractelements
$\begin{bmatrix} 3 & 1 \\ 0 & 2 \\ -4 & -1 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ -2 & -3 \\ -4 & -5 \end{bmatrix}$
Scalar multiplication
Multiply a matrix with a
$3\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \end{bmatrix}$
Matrix multiplication
• Number of in 1st = number of in 2nd $(m \times n) \cdot (n \times p)$
Order of product
 Order is
$\begin{bmatrix} 2 & -1 & 7 \\ 0 & 6 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \\ 3 \end{bmatrix}$
$\begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & 4 \\ -2 & 1 & 2 \end{bmatrix}$

9-04 Inverse Matrices



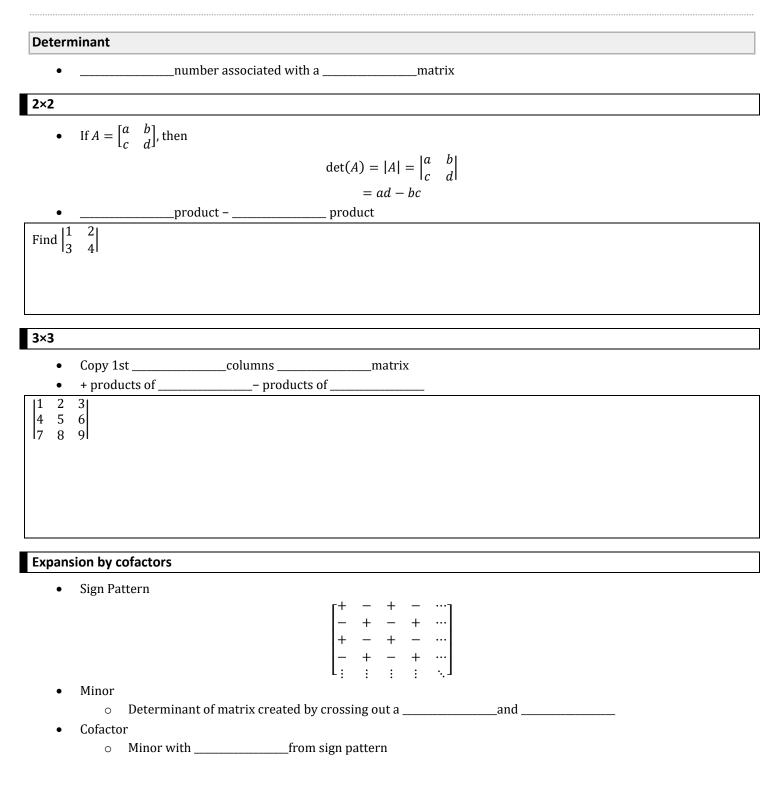
Precalculus 9-04

Use an inverse to solve system of equations

- Write system as _____
- AX = B (coefficients · variables = constants)
- $A^{-1}AX = A^{-1}B$
- $IX = A^{-1}B$
- $X = A^{-1}B$
- Solve by multiplying the ______of the coefficients with the ____

Solve $\begin{cases} 2x + 3y = 0\\ x - 4y = 7 \end{cases}$

9-05 Determinants of Matrices

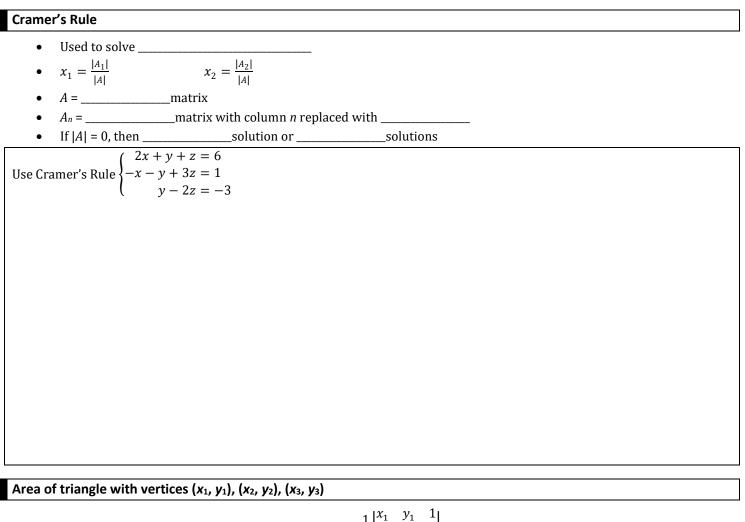


Precalculus 9-05		Name:
$\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \end{bmatrix} \subseteq 1$		
Given $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$, find		
Minor M ₁₃	Cofactor C_{13}	

Find $\begin{vmatrix} -1\\ 3\\ 1 \end{vmatrix}$	0 -2 -1	4 0 1		
	1	11		

Find $ -2 4 0 5 \\ 0 2 -1 0 \\ 3 1 -4 -1 \\ -5 0 -2 3 \right $		

9-06 Applications of Matrices



$$Area = \pm \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

Find the area of triangle with vertices (-3, 1), (2, 4), (5, -3)

		x_1	\boldsymbol{y}_1	1	
•	If	<i>x</i> ₂	y_2	1	= 0, then the points are collinear
		<i>x</i> ₃	y_3	1	

Find equation of line given 2 points (x_1, y_1) and (x_2, y_2)

 $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$

Find the equation of the line passing through (-2, 9) and (3, -1)

Hill Cyp	oher Encoding a Message	_= 0	I = 9	R = 18
1.	Convert the message into	A = 1	J = 10	S = 19
2.	Choose aencoding matrix.	B = 2	K = 11	T = 20
3.	the message numbers into matrices of 1 row and the same number ofas the encoding matrix.	C = 3	L = 12	U = 21
4.	the letter matrices with the encoding matrix.	D = 4	M = 13	V = 22
5.	The encoded message is the list ofproduced.	E = 5	N = 14	W = 23
6.	Decode by using of encoding matrix	F = 6	0 = 15	X = 24
Encodo	Encode LUNCH using $\begin{bmatrix} 1 & 0 \\ 2 & -3 \end{bmatrix}$			Y = 25
Elicode	Lower using $\begin{bmatrix} 2 & -3 \end{bmatrix}$	H = 8	Q = 17	Z = 26